Pascoal Lab

Can we diagnose Alzheimer's disease with a blood test? The current and future role of biomarkers in the diagnosis of Alzheimer's disease.

Tharick Pascoal, MD, Ph.D.

University of Pittsburgh (USA)

Disclosures

No disclosures

Funding

R01AG073267, R01AG075336, P01AG025204, R01AG072641, R01AG077474, R01AG073424, AACSF-20-648075

Learning Objective

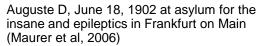
Describe the biomarker diagnostic tests that can be used at UPMC to confirm the diagnosis of Alzheimer's disease.

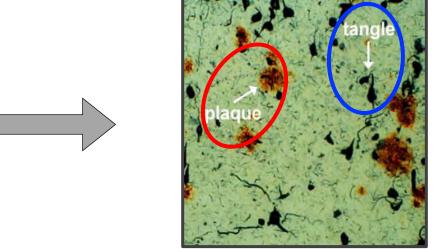
EARLY NOTION OF DEMENTIA

Late nineteenth, early twentieth century.

(1857 lithograph by Armand Gautier) showing personifications of dementia, megalomania, acute mania, melancholia, idiocy, hallucination, erotomania and paralysis in the gardens of the Hospice de la Salpêtrière.

DISCOVERY OF ALZHEIMER'S DISEASE




Dr. Alois Alzheimer

Clinico

pathophysiological

Silver stain, Real amyloid beta plaques and tau protein tangles. Source: Dr. Dale Bredesen website.

ALZHEIMER'S DISEASE (AD)

Clinico-pathophysiological entity responsible for most cases (60-70%) of dementia
 (>30 million people) (Prince at al, 2014).

Clinico

- NINCDS-ADRDA criteria 1984
- DSM 2000
- NIA-AA criteria 2011
- IWG 2007 / 2014

Pathophysiological

- Histopathological studies
- In vivo biomarkers
 (Amyloid-β and tau)

Dementia symptoms

Pathology associated with symptoms (Aβ,tau)

Problem with the purely clinical diagnosis of AD

Post-mortem studies show that ~30% of patients diagnosed with AD by dementia specialists did not have significant underlying Aβ and tau pathologies in the autopsies (Beach et al., 2012).

Dementia versus Alzheimer's disease

> What is dementia?

A <u>clinical syndrome</u> characterized by a progressive cognitive decline that leads to an impairment of the activities of daily living.

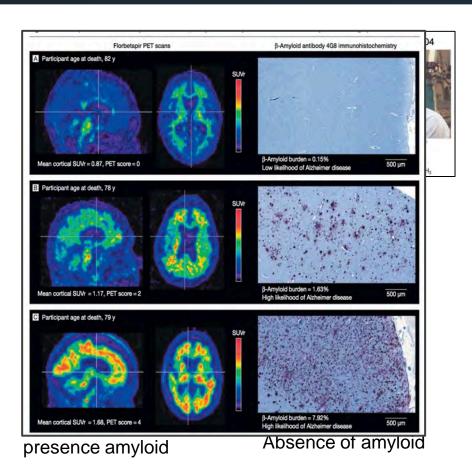
DEMENTIA

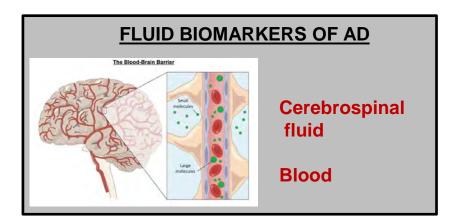
An "umbrella" term used to describe a range of symptoms associated with cognitive impairment.

ALZHEIMER'S DISEASE (AD)

Clinico-pathophysiological entity responsible for most cases (60-70%) of dementia
 (>30 million people) (Prince at al, 2014).

Clinico


- NINCDS-ADRDA criteria 1984
- DSM 2000
- NIA-AA criteria 2011
- IWG 2007 / 2014


Pathophysiological

- Histopathological studies
- In vivo biomarkers
 (Amyloid-β and tau)

Dementia symptoms + Pathology (Aβ,tau)

Biomarkers of AD pathology available in clinical practice

Can we diagnose Alzheimer's disease with a blood test?

Answer: No

Alzheimer's disease biomarker -aid diagnosis

STEP 1 OBJECVITIVE COGNITIVE IMPAIRMENT?

YES

STEP 2 ALZHEIMER'S DISEASE IN THE DIFFERENTIAL?

- Enplechej ctcevgtkuvke "*ej cpi g.'hktuv'u {o r vqo u+
- > Ncd'\gu\lpi '\q'\f gp\lh\'tgc\cdrg'ec\ugu
- ➤ Dtclp'EV10TK

STEP 4

YES

STEP 3 ALZHEIMER'S DISEASE PATHOPHYSIOLOGY?

Alzheimer's disease pathology biomarkers

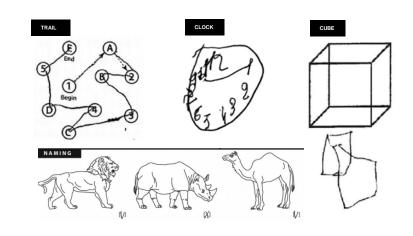
DIQO CTMGT/CIF'FICI P QUIU'QH'CN, J GIO GT IU'FIUGCUG

Objective cognitive impairment?

Main Cognitive Domains Memory

Wichinory

Executive


Language

Attention

Visuo-spatial

- Clinical Assessment
- Cognitive Testing

Brief bedside testing Neuropsychological evaluation

Objective cognitive impairment?

No

Cognitivelyy Normal 1

Subjective impairment

Yes

Dementia

Objective cognitive impairment?

Objective cognitive impairment?

Yes

MilddCognitivieve Impæirmeent

Dementia

Alzheimer's disease biomarker -aid diagnosis

STEP 1 OBJECVITIVE COGNITIVE IMPAIRMENT?

YES

STEP 2

ALZHEIMER'S DISEASE IN THE DIFFERENTIAL?

- Clinical characteristic (change, beginning of symptoms)
- ➤ Lab testing to identify treatable causes RPR, HIV, TSH, B12
- Brain CT/MRI

Case – The importance of blood lab testing

ML, female, 66, memory decline over the past 2 years, worsening in the past 6 months. She reported 2 falls in the past month and in the exam presented some unsteadily walk (neuropathy).

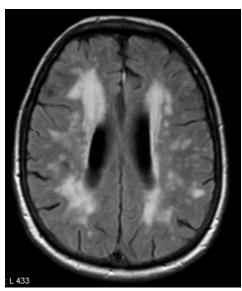
MOCA score: 24/30, 2/5 delayed recall

Did not want perform neuropsyc

MRI: no cerebrovascular disease, atrophy compatible with the age

B12: 126 pg/ml (Reference 200-400)

Plan: B12 replacement and reevaluation / MOCA score: 27/30, 4/5 delayed recall


Case - Brain MRI to assess cerebrovascular disease

S. is a 78-year-old man who smokes for 30 years, overweight, has a resistant hypertension. Mild global disfunction that appeared suddenly 3 years (MOCA = 24/30) ago when had a diagnosis of MCI and remains stable (based on testing done by PCP). No problem to perform ADLs

MOCA = 24

B12 and TSH- No particularities

MCI due to cerebrovascular disease

Alzheimer's disease biomarker -aid diagnosis

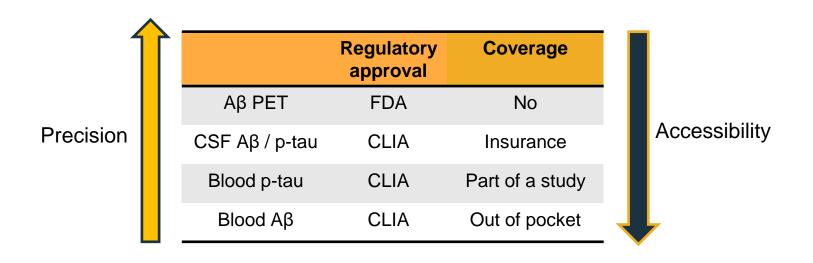
STEP 1 OBJECVITIVE COGNITIVE IMPAIRMENT?

YES

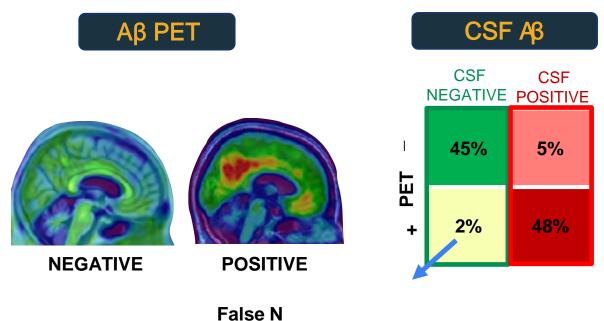
STEP 2

ALZHEIMER'S DISEASE IN THE DIFFERENTIAL?

- Clinical characteristic
- Lab testing to identify treatable causes
- Brain CT/MRI

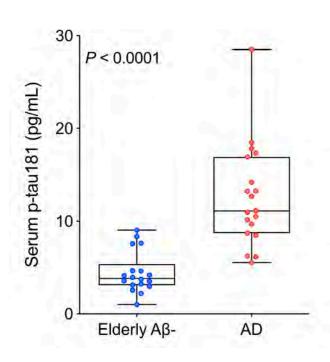

STEP 3

ALZHEIMER'S DISEASE PATHOPHYSIOLOGY?

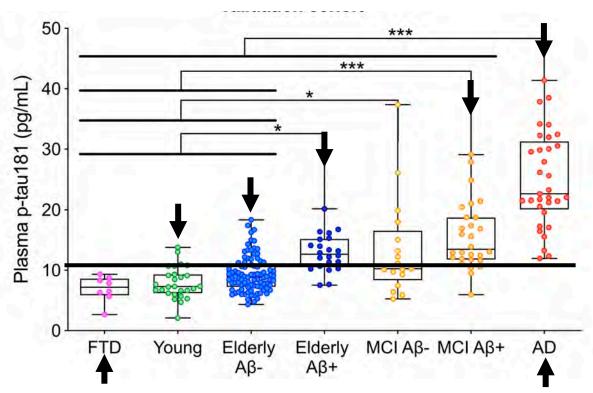

Alzheimer's disease pathology biomarkers

AD biomarkers available to order at UPMC with regulatory approval to be shared with patients and used in patient care

Who can order? Any clinician providing dementia care

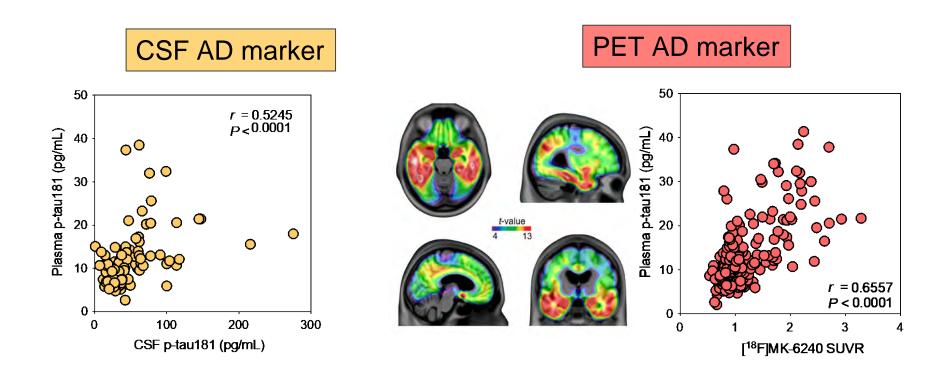


Biomarkers of Aß pathology

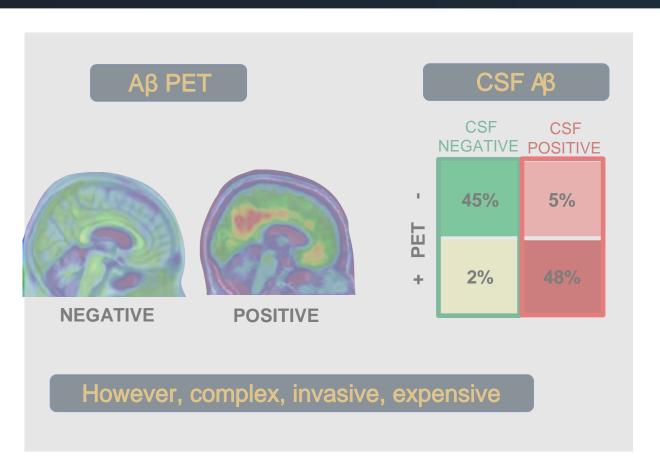


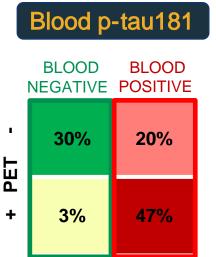
However, complex, invasive, expensive

SERUM AND PLASMA P-TAU181 DIFFERENTIATES ALZHEIMER'S DISEASE PATIENTS FROM AGE-MATCHED CONTROLS IN THE DISCOVERY COHORT



PLASMA P-TAU181 SHOWS A **GRADUAL INCREASE** ALONG THE ALZHEIMER'S DISEASE SPECTRUM IN THE **VALIDATION COHORT**




(Karikari & Pascoal et al., Lancet Neurology 2020)

Plasma p-tau181 correlates with BRAIN TAU PATHOLOGY

Biomarkers of AB pathology

Alzheimer's disease biomarker -aid diagnosis

OBJECVITIVE COGNITIVE IMPAIRMENT?

YES

STEP 2

ALZHEIMER'S DISEASE IN THE DIFFERENTIAL?

YES ????

STEP 3

ALZHEIMER'S DISEASE PATHOPHYSIOLOGY?

Alzheimer's disease pathology biomarkers

JAMA Neurology | Original Investigation

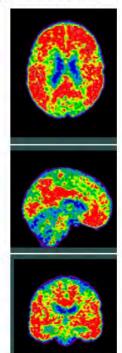
Amyloid Positron Emission Tomography and Subsequent Health Care Use Among Medicare Beneficiaries With Mild Cognitive Impairment or Dementia

Gil D. Rabinovici, MD; Maria C. Carrillo, PhD; Charles Apgar, MBA; Ilana F. Gareen, PhD; Roee Gutman, PhD; Lucy Hanna, MS; Bruce E. Hillner, MD; Andrew March, MHA; Justin Romanoff, MA; Barry A. Siegel, MD; Karen Smith, BS; Yunjie Song, PhD; Christopher Weber, PhD; Rachel A. Whitmer, PhD; Constantine Gatsonis, PhD

Case - Biomarker for diagnostic closure

Amyloid PET positive

LN, 75 yo, Male, visited a cognitive clinic due to progressive cognitive decline over forgot his Social Security Number and had difficulty driving with an associate road


More recently, they report apraxia with difficulty buttoning his shirt.

The patient sleeps reasonably well.

Never took care of finances, but not driven anymore

NPS assessment: Major Neurocognitive Disorder/Dementia. The pattern of particu executive function, and verbal memory compatible with AD

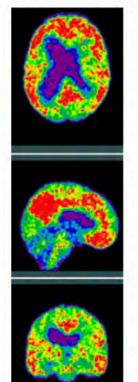
B12 and TSH No particularities MRI done outside, no major cerebrovascular disease

The clinical and paraclinical data suggest mild dementia likely due to Alzheimer's disease

Case - Biomarker for differential of other likely cause

JD is a ~75-year-old male patient who presents to the cognitive clinic problems.

4 year before started with word substitution. Then, language issue a that got progressively worse since then.


In the office, complaints of memory problems and word-finding diffic

MOCA=15. NPS assessment: The pattern of impaired language, executive func

The data suggest dementia with predominant decline in language and memory in MRI suggests the possibility of vascular cognitive impairment. F memory/language suggest the possibility of associated neurodegenerative dis

Mixed dementia vascular (MRI), AD (PET)

Amyloid PET positive

Case 1– Biomarker for prognosis

JM is a 65-year-old male who suffered from an aneurysmal rupture / subarachnoid hemorrhage in 8 years ago with residual cognitive impairment.

Approximately two years ago, patient's husband has reported a progressive decline, as well as severe apathy with the patient needing to be prompted to perform even the simplest tasks such as getting in and out of the shower. A recent MRI scan showed no new lesions.

2 years before Consultation

CSF amyloid-Positive

Mixed dementia vascular (MRI), AD (CSF)

Case – Amyloid (+) is always AD?

F. is a 58 years old woman that hospitalized due to elaborated visual <u>hallucinations</u> (small animals in the room). The family reported that in a previous evaluation the PCP had mentioned that she had both AD and PD. During this hospitalization, the patient <u>presented severe rigidity after the use of antipsychotics and CSF requested</u>. Reported REM sleep disorder.

CSF amyloid - Positive

Brain MRI

Lewy body dementia

Case - Biomarker qualifying for treatment?

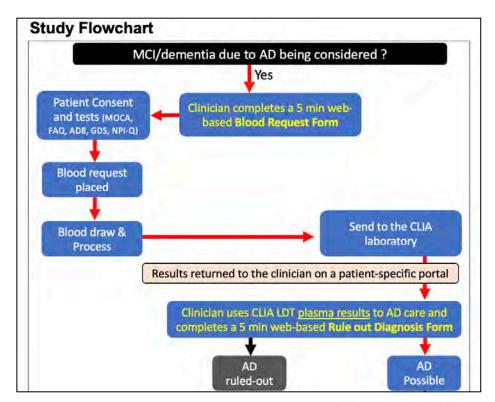
JD is a ~65-year-old female patient who presents with isolate memory decline. Cannot take care of finances.

MOCA=20. NPS: impaired language, executive function, and verbal memory

CSF amyloid-Positive

Mild dementia due to AD

CliPAD (Clinical utility of Plasma biomarkers of Alzheimer's Disease)


Pilot: 1,000

Start data: 01 Sept 2023

Link for UPMC clinicians to request blood tests for free

Ţ

https://research.wpic.upmc.edu/clipad

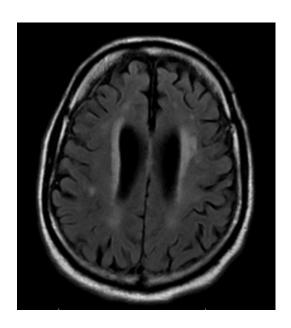
Case - Rule-out blood test

R is a 75-year-old male patient with memory decline over the past 3 years names of friends and doctors he know for many years. In addition, the paimpaired sense of direction and often forgets conversations with

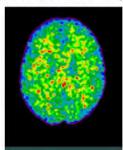
Blood p-tau181

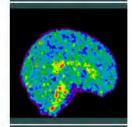
BLOOD BLOOD
NEGATIVE POSITIVE

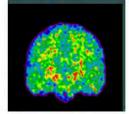
30%


20%

3% 47%


recall


es


.11

Amyloid PET negative

SUMARY/CONCLUSION

The use of in vivo biomarkers is crucial for an accurate diagnosis of the cause of dementia symptoms. Although an accurate diagnosis is important for families and patients in many cases, it does not necessarily alter the patient's prognosis without access to effective treatments.

3

Acknowledgements

University of Pittsburgh

Pâmela C.L. Ferreira Guilherme Povala Carolina Soares Hussein Zalzale Bruna Bellaver Firoza Z. Lussier Francieli Rohden Sarah Abbas Douglas T. Leffa Oscar Lopez William Klunk Dana Tudorascu Ann Cohen Victor Villemagne Thomas Karikari

McGill University

Joseph Therriault Cécile Tissot Serge Gauthier Pedro Rosa-Neto

University of Gothenburgh

Andréa L. Benedet Nicholas J. Ashton Kaj Blennow

Thomas Karikari Henrik Zetterberg

Brain Institute of Rio Grande do Sul

João Pedro Ferrari-Souza

Eduardo R. Zimmer Lucas P. Schilling

pascoallab.org @LabPascoal